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Dynamics of nonlinear localized states on finite discrete chains
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We present an analysis of boundary effects on soliton motion in one-dimensional discrete nonlinéar Schro
dinger systems. In an effective point particle framework, we derive effective potentials induced, respectively,
by fixed and free boundaries for the integrable case. We establish an effective Hamiltonian that captures the
soliton dynamics under the combined effects of the finiteness of the lattice size and the discreteness of
nonintegrable systems. Our direct numerical simulations demonstrate that these potentials can describe the
soliton motion excellently[S1063-651X97)14605-0

PACS numbsg(s): 03.40.Kf, 63.20.Pw, 46.18.z, 42.81.Dp

The prominence of the discrete nonlinear Sdimger ton center performs oscillations with amplitudes spanning
(NLS) system, as one of the most widely studied discretamany lattice sites without significant change of its envelope
nonlinear systems, stems not only from its applicability inprofile. Figure 2 displays the trajectory of the soliton center
diverse physical situationd] but also from its simple, yet x(t) numerically obtained as
rich mathematical structure: NLS in the Ablowitz-Ladik
(AL) discretization[2] is completely integrable by the in-

verse scattering transform. There is also another discretiza- ; Npn
tion combining the AL and a standard discretizat{&®D) in x(t)= pn=In(1+ ). ®)
a tunable way3,4]: S,

n

n

i‘pn:_(¢n+1+¢n71)(1+ﬂ|¢|2)_27j|¢n|2¢n- 1) o
X(t) would be the exact soliton parametein Eq. (2) for the
This system provides an ideal model for studying the interinfinite AL lattice. Clearly the large amplitude oscillations in
plays of discreteness and nonlinearity and of integrabilitythis trajectory cannot be ascribed to the presence of a PNP.
and nonintegrability{3—6]. A good understanding of the |n what follows we will resolve the structure of the dynamics
nonlinear coherent excitations and their dynamics in this sysand demonstrate that the large amplitude oscillations are in-
tem can offer insight to the general dynamics of discreteduced by the soliton interaction with the boundaries while
nonlinear systems. For=0, Eq. (1) is the integrable AL the fine scales along the trajectory are a consequence of the
NLS [the scaling properties of Eql) allow us to set PNP induced by the discreteness of the nonintegrable lattice.
w#=1] and has the one-soliton solution To isolate the pure boundary effects without the PNP
complication, we first restrict ourselves to the pure AL sys-
n.soft) =sinhB sechi B(n—x)]exdia(n—x)+ic] (2)

on the infinite lattice. Here the wave numbek (— 7, 7] ==
and the amplitude paramet@gre (0,) are constants while
the centex and phaser of the soliton obey simple dynami-
cal equation$3]. Treating ther term as a perturbation to the
integrable AL dynamics of the infinite lattice, perturbational
approaches leading to dynamical equations for the soliton
parametersy, 8, o, andx have been carried oli7,8]. The
main result is that ther term induces a Peierls-Nabarro pe-
riodic potential (PNP for a translating solitor{3]. Since
most physical systems are spatially finite and numerical
simulations are always performed on a finite lattice, we will
address here the issue of boundary effects on the soliton
dynamics. For example, in numerical simulations of Eq.

on a finite lattice with fixed boundary conditiofiBC) (see
below) with the soliton[Eqg. (2)] as the initial condition, the
soliton of «=0 (otherwise stationary in the infinite systgm
executes complicated motions as exhibited in Fig. 1: the soli-
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FIG. 1. Evolution of the initial soliton[Eqg. (2)] with
*Permanent address: Institute of Mathematical Modelling, Tech8=0.5,a=0 in the system( 1) (x«=1,,=0.015). Lattice of 50
nical University of Denmark, DK-2800, Lyngby, Denmark. sites with fixed BC's] ()| is plotted.
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FIG. 2. Numerical trajectory(t) (fine line) of the soliton center FIG. 3. Periods of harmonic oscillation of the initial solitf#.

in Fig. 1 and the total potenti&l (x): dashed line, constructed from (2)] with 5=0.1,a=0, vs lattice size of the AL system with fixed

this x(t); thick line, analytical predictiofiU(x) is in the unit of the  BCs: crosses: numerical simulations; straight line: theoretical pre-
effective massn= g/(2sinhB)], see text. diction [Eq. (11)].

tem of a finite sizeL [without loss of generality, d(n)

L=(2N+1)], with the following boundary conditiongi) =4sinhB3sina, )

fixed BC's, ¢ni1=¢¥_n-1=0, or (i) free BC's, dt
Un+1= YN, ¥_n—1=_N . For this system we derive d2(n)
a(n) N F=—64sinr?,8exq—2,8(N+1)]
n
ar ! :2 (V1= Y adn), @ X (sinttBcoga+ cost Bsirfa)sinh(28x). (8)
2(n) The potential well in Eq(8) is the net effect of two opposite,
> =2(| NP = n|?) + el (U -1+ I ) purely repulsive forces on the soliton produced by the
boundaries, which depend exponentially weakly on the sys-
XL+ nl?) = (W s -t o) tem size as a consequence of the soliton interaction with the
exponentially small tails of its images. For %<1, using
X(1+|y_nl®}, (5)  (ny=2Bx,N=2p for |x|]<N (therefore, B is, approxi-

mately, constant from the norm conservajioggs.(7) and
wheree=0,1 for the fixed and free BC's, respectively. Here (8) yield a point particle description for the soliton motion in
the soliton center of mags)=3N__\np,. For the soliton  Hamiltonian form and in terms of the generalized collective
(2), (n)=2px. We note that the norV=3__yp, is still  coordinates X,a): x=aH/da, a=—3dHIdx, where
conserved for the finite system with either BC's. ThereforeH =K + V/(x),
the interpretation op,, as probability densitymodulo a nor-

malization factoy again holds. Equatiori5) clearly shows 2sinh3

that the soliton center motion is controlled by its interaction K=- B Co, ©)
with the boundaries in contrast to the case of the infinite AL

system with sufficiently rapidly decaying BC's, for which we 8sint 3

haved?(n)/dt?=0, i.e., acceleration always vanishes. V(X)= exd —2B(N+1)]cosh2p8x). (10

B

The small amplitude, harmonic oscillation of this Hamil-
tonian has the period

Considering first the case of the fixed BC's<0), we
can further quantify the results of Eqg) and (5) by intro-
ducing the ansatz

Unsol )+ U520, —N=n=0, ™
Pn(t) = B (6) T= meXdﬁ(NH)]- (11
Unsol D+ 955 °(),  0<n=N,

The comparison in Fig. 3 shows excellent agreement be-
where  ¢52°%(t) =sinhB secliB(nFM +x)Jexd —ia(NFM  tween this analytical prediction and the period of the soliton
+xX)+io+im], M=2(N+1). This ansatz is an approximate motion in the harmonic limit obtained in direct numerical
solution of the finite AL system satisfying the fixed BC’s. simulations of finite AL systems with the fixed BC’s. The
The dynamics resulting from the fixed BC’s can be viewedfigure also clearly illustrates the exponentially weak depen-
as the interaction of the solitogi, ,o(t) with the small tails  dence of the boundary effect on the system lattice size. Large
[described byt,//,io(t)] of its two mirror image solitongof  amplitude oscillations were also compared to the predictions
the opposite phagereflected by the two boundaries. For by the effective Hamiltonian and excellent agreement for tra-
|x|<N, Egs.(4) and(5) become jectories was again achieved.
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In contrast to the simple repulsive effect created by the 20 ‘ ‘ 20
fixed BC, the effect of the free BC's is subtler. We start our
analysis of this case by introducing the following approxi- 115

mate solution satisfying the free BC's:

‘pn,so(t) + w;il(t)1 —N=n=0,

()= - (12)
Ynsol )+ P53 (1), 0<n<N,

where 55 1(t)=sinhB secliB(nFM’ +x)]exg —ia(nFM’ \\/ \/ 105

+X)+iog], M'=2N+1. The soliton interaction with the
boundary can again be viewed as its interaction with its two -1 ‘ ‘ 10
. . . . —40.0 -20.0 0.0 20.0 40.0
image solitongbut now with equal phasgsUsing the same x

approach as above we find
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FIG. 4. Numerical trajectory(t) (medium thick ling of the
initial soliton [Eq. (2)] with 8=0.1,a=0, andx=—1 in the AL

X= ZSInf]Bsina' (13) system. Total number of sités=81 with free BC’s. Also shown is
B the corresponding trajectofyhinnest ling of a point particle in the
effective potentialthickest ling.
a=16sintBexd — (2N +1)] We can readily conclude that the soliton center motion in the

X (sink? 8— costBtanasina)sinh(2 8x) (14)  system (1) of a finite lattice size can be captured by the
’ effective Hamiltonian

under the assumptiox| <N, i.e., the soliton does not enter Her=K+U(X), U(X)=V(X)+W(x), (16)
the boundary regions. Neglecting higher order terms of
O(a?), we have again a point particle Hamiltonian for the such that the soliton experiences two independent potentials,
soliton with an effective potential that is peaked at the centepne due to the finite length of the lattice and the other due to
of the system. Therefore, a soliton in the central region willthe discreteness of the nonintegrable system. The Hamil-
roll down the potential towards a boundary, thus eventuallytonian(16) can indeed give rise to the trajectory in Fig. 2. It
entering the boundary region. Hence E@$3) and (14) is demonstrated in the figure that the prediction of the total
break down eventually as a description of the soliton dynampotentialU (x) compares strikingly well with the numerically
ics. When a soliton approaches the boundary, it deformsonstructed potential from this trajectory byJ(x)
from the single soliton profile, colliding with its image soli- =E—(m/2)(dx/dt)?, whereE is a constant used to adjust
ton. Then it bounces off the boundary and reemerges as the potential level anan is the mass of the point particle,
separate single soliton. F&>1/B, i.e., the system size is m= B/(2sinhgB). In this comparison, we have utilized the fact
large compared with the width of the soliton, the duration ofthat a><1.
this collision process is very short compared with the travel- Finally, we discuss the boundary effect in a more compli-
ing time of the soliton from the center region. Fef<1, the  cated situation, i.e., the NLS in the pure SD form=0).
potential concept is still valid in this case for an approximateWe note that this system can no longer be viewed as a per-
description of the soliton center motion, i.&(t). This ef-  turbation to the AL system, as the limit gf— 0 for a fixed
fective potential can be constructed by integrating the forcanonvanishingy is equivalent tov— o with a fixed nonvan-
derived by substituting ansat?) into the right-hand side of ishing u; i.e., the on-site term is always dominant. Neverthe-
Eqg. (5). To illustrate this we show in Fig4 a trajectory less, the analysis above still provides a good qualitative un-
X(t) obtained by direct simulations and a corresponding nuelerstanding of the soliton behavior. Figure 5 shows a typical
merically integrated trajectorythinnest lin@ of the point soliton trajectory exhibiting very complicated motion. For
particle in the effective potentidthickest ling. The overall  this case, the soliton has an approximate form of(Egwith
agreement between these two trajectories is rather good eg=0.5 since an AL soliton solution is, obviously, no longer
cept for the boundary region, in which lies, as expected, than exact solution of the SD NLS. This soliton sometimes
main discrepancy. executes large amplitude oscillatory motions bounded by the
Having analyzed the boundary effects in the finite AL boundary-induced potential, rolling across many PNP barri-
system, we can now present an explanation for the solitoers, as seen in Fig. 5; sometimes, it is trapped at some lattice
behavior observed in Figs. 1 and 2 for the general syé$tém site by the PNP whose barrier heights have been increased by
As has been showfi], treating thev term in Eq.(1) as a  strong irregular background radiation to such an extent that
perturbation to the integrable part leads to the Hamiltoniarthe kinetic energy of the soliton can no longer overcome the
dynamicsx= 9H/da,a= — dH/ x, whereH=K +1(x), and  barrier. Here, the background radiation can be regarded as
the PNPV(X) is temporarily dressing the coherent regular solitonic profile,
thus giving rise to a local change of the PNP barrier, or
Asm2sint? equivalently it can be regarded as a perturbation to the point
Vx)=—» smsin B cog2msx). (15  Particle motion in a PNP calculated using a regular solitonic
&4 Bsinh(7%sl B) profile. Insets(a) and (b) in Fig. 5 display in detail compli-
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25.0 : ‘ : In conclusion, we have developed an analysis of
finite lattice effects on soliton motion in the discrete
NLS system. Its quantitative predictions have been con-
firmed by our full numerical simulations. We have also
established an effective point particle picture for the soliton
motion under the joint forces induced by the boundaries
and by the discreteness of the nonintegrable lattice. Although
boundary effects are generic in any finite size simulations,
we point out that the finite size effect can generate significant
additional dynamics for solitons. Hence, care must be
taken in deciding the appropriate system size for numerical
simulations of nonlinear system$9]. We note that
’?‘m . a0 this boundary effect has ramifications for energy focusing
100000 200000 300000 400000 and dynamics on finite chain segments, and for semiclassical
Time quantization of soliton bearing systems: e.g., energy
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FIG. 5. Nume_rlcal trajectori(t) of the soliton center in the levels derived from periodic BC's may be renormalized by
system[Eg. (1)] with ©=0, andv=1. Insets(a) and (b) are mag- the boundary effect if fixed or fr BC's are im d or
nifications of the trapped portions of the trajectory around times € . _ou ary etiec ed o ‘?e S a_e_ posed, o
t~85 000 and~ 210 000, respectively. additional levels may appear in a sufficiently strong

boundary-induced potential as the lattice size becomes

cated solitonic motions crossing PNP barriers. We note thasthor
the dark stripes in Fig. 5 are fast oscillations within a PNP  K.@.R. thanks Los Alamos National Laboratory for hos-
well with amplitudes of about a half lattice spacitgpe the pitality. The work at Los Alamos was supported by the U.S.
two insets. DOE.
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