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Dynamics of nonlinear localized states on finite discrete chains

K. O” . Rasmussen,* David Cai, A. R. Bishop, and Niels Gro”nbech-Jensen
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~Received 24 September 1996!

We present an analysis of boundary effects on soliton motion in one-dimensional discrete nonlinear Schro¨-
dinger systems. In an effective point particle framework, we derive effective potentials induced, respectively,
by fixed and free boundaries for the integrable case. We establish an effective Hamiltonian that captures the
soliton dynamics under the combined effects of the finiteness of the lattice size and the discreteness of
nonintegrable systems. Our direct numerical simulations demonstrate that these potentials can describe the
soliton motion excellently.@S1063-651X~97!14605-0#

PACS number~s!: 03.40.Kf, 63.20.Pw, 46.10.1z, 42.81.Dp
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The prominence of the discrete nonlinear Schro¨dinger
~NLS! system, as one of the most widely studied discr
nonlinear systems, stems not only from its applicability
diverse physical situations@1# but also from its simple, ye
rich mathematical structure: NLS in the Ablowitz-Lad
~AL ! discretization@2# is completely integrable by the in
verse scattering transform. There is also another discre
tion combining the AL and a standard discretization~SD! in
a tunable way@3,4#:

i ċn52~cn111cn21!~11mucu2!22nucnu2cn . ~1!

This system provides an ideal model for studying the int
plays of discreteness and nonlinearity and of integrabi
and nonintegrability@3–6#. A good understanding of the
nonlinear coherent excitations and their dynamics in this s
tem can offer insight to the general dynamics of discr
nonlinear systems. Forn50, Eq. ~1! is the integrable AL
NLS @the scaling properties of Eq.~1! allow us to set
m51# and has the one-soliton solution

cn,sol~ t !5sinhb sech@b~n2x!#exp@ ia~n2x!1 is# ~2!

on the infinite lattice. Here the wave numberaP(2p,p#
and the amplitude parameterbP(0,̀ ) are constants while
the centerx and phases of the soliton obey simple dynami
cal equations@3#. Treating then term as a perturbation to th
integrable AL dynamics of the infinite lattice, perturbation
approaches leading to dynamical equations for the sol
parametersa, b, s, andx have been carried out@7,8#. The
main result is that then term induces a Peierls-Nabarro p
riodic potential ~PNP! for a translating soliton@3#. Since
most physical systems are spatially finite and numer
simulations are always performed on a finite lattice, we w
address here the issue of boundary effects on the so
dynamics. For example, in numerical simulations of Eq.~1!
on a finite lattice with fixed boundary conditions~BC! ~see
below! with the soliton@Eq. ~2!# as the initial condition, the
soliton ofa50 ~otherwise stationary in the infinite system!
executes complicated motions as exhibited in Fig. 1: the s
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ton center performs oscillations with amplitudes spann
many lattice sites without significant change of its envelo
profile. Figure 2 displays the trajectory of the soliton cen
x̄(t) numerically obtained as

x̄~ t ![

(
n

nrn

(
n

rn

, rn5 ln~11ucnu2!. ~3!

x̄(t) would be the exact soliton parameterx in Eq. ~2! for the
infinite AL lattice. Clearly the large amplitude oscillations
this trajectory cannot be ascribed to the presence of a P
In what follows we will resolve the structure of the dynami
and demonstrate that the large amplitude oscillations are
duced by the soliton interaction with the boundaries wh
the fine scales along the trajectory are a consequence o
PNP induced by the discreteness of the nonintegrable lat

To isolate the pure boundary effects without the PN
complication, we first restrict ourselves to the pure AL sy

-
FIG. 1. Evolution of the initial soliton @Eq. ~2!# with

b50.5,a50 in the system~ 1! (m51,n50.015). Lattice of 50
sites with fixed BC’s.ucn(t)u is plotted.
6151 © 1997 The American Physical Society
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tem of a finite size L @without loss of generality,
L5(2N11)#, with the following boundary conditions:~i!
fixed BC’s, cN115c2N2150, or ~ii ! free BC’s,
cN115cN ,c2N215c2N . For this system we derive

d^n&
dt

5 i (
n52N

N

~cn11* cn2cn11cn* !, ~4!

d2^n&
dt2

52~ uc2Nu22ucNu2!1e$~cN*cN211cNcN21* !

3~11ucNu2!2~c2N* c2N111c2Nc2N11* !

3~11uc2Nu2!%, ~5!

wheree50,1 for the fixed and free BC’s, respectively. He
the soliton center of masŝn&5(n52N

N nrn . For the soliton
~2!, ^n&52bx. We note that the normN5(n52N

N rn is still
conserved for the finite system with either BC’s. Therefo
the interpretation ofrn as probability density~modulo a nor-
malization factor! again holds. Equation~5! clearly shows
that the soliton center motion is controlled by its interacti
with the boundaries in contrast to the case of the infinite
system with sufficiently rapidly decaying BC’s, for which w
haved2^n&/dt2[0, i.e., acceleration always vanishes.

Considering first the case of the fixed BC’s (e50), we
can further quantify the results of Eqs.~4! and ~5! by intro-
ducing the ansatz

cn~ t !5H cn,sol~ t !1cn2
e50~ t !, 2N<n<0,

cn,sol~ t !1cn1
e50~ t !, 0,n<N,

~6!

where cn6
e50(t)5sinhb sech@b(n7M1x)#exp@2ia(n7M

1x)1is1ip#, M52(N11). This ansatz is an approxima
solution of the finite AL system satisfying the fixed BC’
The dynamics resulting from the fixed BC’s can be view
as the interaction of the solitoncn,sol(t) with the small tails
@described bycn6

e50(t)# of its two mirror image solitons~of
the opposite phase! reflected by the two boundaries. Fo
uxu!N, Eqs.~4! and ~5! become

FIG. 2. Numerical trajectoryx̄(t) ~fine line! of the soliton center
in Fig. 1 and the total potentialU(x): dashed line, constructed from
this x̄(t); thick line, analytical prediction@U(x) is in the unit of the
effective massm5b/(2sinhb)#, see text.
,

L

d^n&
dt

54sinhbsina, ~7!

d2^n&
dt2

5264sinh2bexp@22b~N11!#

3~sinh2bcos2a1cosh2bsin2a!sinh~2bx!. ~8!

The potential well in Eq.~8! is the net effect of two opposite
purely repulsive forces on the soliton produced by t
boundaries, which depend exponentially weakly on the s
tem size as a consequence of the soliton interaction with
exponentially small tails of its images. For sin2a!1, using
^n&>2bx,N>2b for uxu!N ~therefore, b is, approxi-
mately, constant from the norm conservation!, Eqs.~7! and
~8! yield a point particle description for the soliton motion
Hamiltonian form and in terms of the generalized collecti
coordinates (x,a): ẋ5]H/]a, ȧ52]H/]x, where
H5K1V(x),

K52
2sinhb

b
cosa, ~9!

V~x!5
8sinh3b

b
exp@22b~N11!#cosh~2bx!. ~10!

The small amplitude, harmonic oscillation of this Ham
tonian has the period

T5
p

4sinh2b
exp@b~N11!#. ~11!

The comparison in Fig. 3 shows excellent agreement
tween this analytical prediction and the period of the solit
motion in the harmonic limit obtained in direct numeric
simulations of finite AL systems with the fixed BC’s. Th
figure also clearly illustrates the exponentially weak dep
dence of the boundary effect on the system lattice size. La
amplitude oscillations were also compared to the predicti
by the effective Hamiltonian and excellent agreement for t
jectories was again achieved.

FIG. 3. Periods of harmonic oscillation of the initial soliton@Eq.
~2!# with b50.1,a50, vs lattice size of the AL system with fixed
BCs: crosses: numerical simulations; straight line: theoretical p
diction @Eq. ~11!#.
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In contrast to the simple repulsive effect created by
fixed BC, the effect of the free BC’s is subtler. We start o
analysis of this case by introducing the following appro
mate solution satisfying the free BC’s:

cn~ t !5H cn,sol~ t !1cn2
e51~ t !, 2N<n<0,

cn,sol~ t !1cn1
e51~ t !, 0,n<N,

~12!

where cn6
e51(t)5sinhb sech@b(n7M 81x)#exp@2ia(n7M8

1x)1is#, M852N11. The soliton interaction with the
boundary can again be viewed as its interaction with its t
image solitons~but now with equal phases!. Using the same
approach as above we find

ẋ5
2sinhb

b
sina, ~13!

ȧ516sinhbexp@2b~2N11!#

3~sinh2b2coshbtanasina!sinh~2bx!, ~14!

under the assumptionuxu!N, i.e., the soliton does not ente
the boundary regions. Neglecting higher order terms
O(a2), we have again a point particle Hamiltonian for th
soliton with an effective potential that is peaked at the cen
of the system. Therefore, a soliton in the central region w
roll down the potential towards a boundary, thus eventua
entering the boundary region. Hence Eqs.~13! and ~14!
break down eventually as a description of the soliton dyna
ics. When a soliton approaches the boundary, it defo
from the single soliton profile, colliding with its image sol
ton. Then it bounces off the boundary and reemerges
separate single soliton. ForN@1/b, i.e., the system size i
large compared with the width of the soliton, the duration
this collision process is very short compared with the trav
ing time of the soliton from the center region. Fora2!1, the
potential concept is still valid in this case for an approxim
description of the soliton center motion, i.e.,x̄(t). This ef-
fective potential can be constructed by integrating the fo
derived by substituting ansatz~12! into the right-hand side o
Eq. ~5!. To illustrate this we show in Fig. 4 a trajectory
x̄(t) obtained by direct simulations and a corresponding
merically integrated trajectory~thinnest line! of the point
particle in the effective potential~thickest line!. The overall
agreement between these two trajectories is rather good
cept for the boundary region, in which lies, as expected,
main discrepancy.

Having analyzed the boundary effects in the finite A
system, we can now present an explanation for the sol
behavior observed in Figs. 1 and 2 for the general system~1!.
As has been shown@7#, treating then term in Eq.~1! as a
perturbation to the integrable part leads to the Hamilton
dynamicsẋ5]H/]a,ȧ52]H/]x, whereH5K1V(x), and
the PNPV(x) is

V~x!52n(
s51

`
4sp2sinh2b

b3sinh~p2s/b!
cos~2psx!. ~15!
e
r

o

f

r
ll
y

-
s

a

f
l-

e

e

-

x-
e

n

n

We can readily conclude that the soliton center motion in
system~1! of a finite lattice size can be captured by th
effective Hamiltonian

Heff5K1U~x!, U~x!5V~x!1V~x!, ~16!

such that the soliton experiences two independent potent
one due to the finite length of the lattice and the other due
the discreteness of the nonintegrable system. The Ha
tonian~16! can indeed give rise to the trajectory in Fig. 2.
is demonstrated in the figure that the prediction of the to
potentialU(x) compares strikingly well with the numericall
constructed potential from this trajectory byU(x)
5E2(m/2)(dx̄/dt)2, whereE is a constant used to adjus
the potential level andm is the mass of the point particle
m5b/(2sinhb). In this comparison, we have utilized the fa
thata2!1.

Finally, we discuss the boundary effect in a more comp
cated situation, i.e., the NLS in the pure SD form (m50).
We note that this system can no longer be viewed as a
turbation to the AL system, as the limit ofm→0 for a fixed
nonvanishingn is equivalent ton→` with a fixed nonvan-
ishingm; i.e., the on-site term is always dominant. Neverth
less, the analysis above still provides a good qualitative
derstanding of the soliton behavior. Figure 5 shows a typ
soliton trajectory exhibiting very complicated motion. F
this case, the soliton has an approximate form of Eq.~2! with
b50.5 since an AL soliton solution is, obviously, no long
an exact solution of the SD NLS. This soliton sometim
executes large amplitude oscillatory motions bounded by
boundary-induced potential, rolling across many PNP ba
ers, as seen in Fig. 5; sometimes, it is trapped at some la
site by the PNP whose barrier heights have been increase
strong irregular background radiation to such an extent
the kinetic energy of the soliton can no longer overcome
barrier. Here, the background radiation can be regarded
temporarily dressing the coherent regular solitonic profi
thus giving rise to a local change of the PNP barrier,
equivalently it can be regarded as a perturbation to the p
particle motion in a PNP calculated using a regular solito
profile. Insets~a! and ~b! in Fig. 5 display in detail compli-

FIG. 4. Numerical trajectoryx̄(t) ~medium thick line! of the
initial soliton @Eq. ~2!# with b50.1,a50, andx521 in the AL
system. Total number of sitesL581 with free BC’s. Also shown is
the corresponding trajectory~thinnest line! of a point particle in the
effective potential~thickest line!.
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cated solitonic motions crossing PNP barriers. We note
the dark stripes in Fig. 5 are fast oscillations within a PN
well with amplitudes of about a half lattice spacing~see the
two insets!.

FIG. 5. Numerical trajectoryx̄(t) of the soliton center in the
system@Eq. ~1!# with m50, andn51. Insets~a! and ~b! are mag-
nifications of the trapped portions of the trajectory around tim
t;85 000 andt;210 000, respectively.
a
.D
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In conclusion, we have developed an analysis
finite lattice effects on soliton motion in the discre
NLS system. Its quantitative predictions have been c
firmed by our full numerical simulations. We have als
established an effective point particle picture for the solit
motion under the joint forces induced by the boundar
and by the discreteness of the nonintegrable lattice. Altho
boundary effects are generic in any finite size simulatio
we point out that the finite size effect can generate signific
additional dynamics for solitons. Hence, care must
taken in deciding the appropriate system size for numer
simulations of nonlinear systems@9#. We note that
this boundary effect has ramifications for energy focus
and dynamics on finite chain segments, and for semiclass
quantization of soliton bearing systems: e.g., ene
levels derived from periodic BC’s may be renormalized
the boundary effect if fixed or free BC’s are imposed,
additional levels may appear in a sufficiently stro
boundary-induced potential as the lattice size becom
short.
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